Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present multiwavelength high-spatial resolution (∼0.″1, 70 pc) observations of UGC 4211 at z = 0.03474, a late-stage major galaxy merger at the closest nuclear separation yet found in near-IR imaging (0.″32, ∼230 pc projected separation). Using Hubble Space Telescope/Space Telescope Imaging Spectrograph, Very Large Telescope/MUSE+AO, Keck/OSIRIS+AO spectroscopy, and the Atacama Large Millimeter/submillimeter Array (ALMA) observations, we show that the spatial distribution, optical and near-infrared emission lines, and millimeter continuum emission are all consistent with both nuclei being powered by accreting supermassive black holes (SMBHs). Our data, combined with common black hole mass prescriptions, suggest that both SMBHs have similar masses, log M BH / M ⊙ ∼ 8.1 (south) and log M BH / M ⊙ ∼ 8.3 (north), respectively. The projected separation of 230 pc (∼6× the black hole sphere of influence) represents the closest-separation dual active galactic nuclei (AGN) studied to date with multiwavelength resolved spectroscopy and shows the potential of nuclear (<50 pc) continuum observations with ALMA to discover hidden growing SMBH pairs. While the exact occurrence rate of close-separation dual AGN is not yet known, it may be surprisingly high, given that UGC 4211 was found within a small, volume-limited sample of nearby hard X-ray detected AGN. Observations of dual SMBH binaries in the subkiloparsec regime at the final stages of dynamical friction provide important constraints for future gravitational wave observatories.more » « less
-
Abstract Interferometric observations of gravitational microlensing events offer an opportunity for precise, efficient, and direct mass and distance measurements of lensing objects, especially those of isolated neutron stars and black holes. However, such observations have previously been possible for only a handful of extremely bright events. The recent development of a dual-field interferometer, GRAVITY Wide, has made it possible to reach out to significantly fainter objects and increase the pool of microlensing events amenable to interferometric observations by 2 orders of magnitude. Here, we present the first successful observation of a microlensing event with GRAVITY Wide and the resolution of microlensed images in the event OGLE-2023-BLG-0061/KMT-2023-BLG-0496. We measure the angular Einstein radius of the lens with subpercent precision,θE = 1.280 ± 0.009 mas. Combined with the microlensing parallax detected from the event light curve, the mass and distance to the lens are found to be 0.472 ± 0.012M⊙and 1.81 ± 0.05 kpc, respectively. We present the procedure for the selection of targets for interferometric observations and discuss possible systematic effects affecting GRAVITY Wide data. This detection demonstrates the capabilities of the new instrument, and it opens up completely new possibilities for the follow-up of microlensing events and future routine discoveries of isolated neutron stars and black holes.more » « lessFree, publicly-accessible full text available February 3, 2026
An official website of the United States government
